MATH 5061 Problem Set 2¹ Due date: Mar 4, 2020

Problems: (Please either type up your assignment or scan a copy of your written assignment into ONE PDF file and send it to me by email on/before the due date. Please remember to write down your name and SID.)

- 1. A vector field X is said to be *complete* if its flow φ_t is defined for all $t \in \mathbb{R}$.
 - (a) Prove that any vector field on a compact manifold is complete. (*Hint: By Whitney embedding theorem, you can assume that the compact manifold is embedded in some* \mathbb{R}^N for some N.)
 - (b) Give an example of an incomplete vector field on \mathbb{R} .
- 2. Give an alternative proof that $\mathcal{L}_X Y = [X, Y]$ along the following lines.
 - (a) First consider the case when $X(P) \neq 0$ and choose coordinates x^1, \dots, x^n near P in which $X = \frac{\partial}{\partial x^1}$. Explicitly determine the flow φ_t in these coordinates, write Y in coordinates, and check directly that

$$[X,Y] = \lim_{t \to 0} \frac{(\varphi_{-t})_* (Y(\varphi_t(P)) - Y(P))}{t}.$$

- (b) Explain why it is sufficient to check that $\mathcal{L}_X Y = [X, Y]$ in a coordinate system. Give a continuity argument to show that $\mathcal{L}_X Y = [X, Y]$ even at points where X = 0.
- 3. Let V be an m-dimensional real vector space. An element $\sigma \in \wedge^k V$ is called *simple* if there exist $v_1, \dots, v_k \in V$ such that $\sigma = v_1 \wedge \dots \wedge v_k$.
 - (a) Show that every element of $\wedge^{m-1}V$ is simple. (*Hint: Fix* $\sigma \in \wedge^{m-1}V$, consider the map $v \mapsto \sigma \wedge v$.)
 - (b) Give an example of a non-simple element in $\wedge^2 \mathbb{R}^4$.
 - (c) Let W be a k-dimensional subspace of V. Given a basis e_1, \dots, e_k for W, consider the element $e_1 \wedge \dots \wedge e_k$. Examine what happens when one chooses a different basis, and construct a 1-1 map from the collection of all k dimensional subspaces of V onto the subset of simple elements of the projective space (space of lines through the origin) on the vector space $\wedge^k V$.
- 4. Let V^m be a vector space with a positive definite scalar product g. We extend the scalar product to $\wedge^k V$ be requiring that

$$g(v_1 \wedge \cdots \wedge v_k, w_1 \wedge \cdots \wedge w_k) = \det(g(v_i, w_j))$$

on simple k-vectors. Note that this implies that if e_1, \dots, e_m is an orthonormal basis for (V, g), then $e_{i_1} \wedge \dots \wedge e_{i_k}, 1 \leq i_1 < i_2 < \dots < i_k \leq m$, is an orthonormal basis for $\wedge^k V$.

- (a) Show that the pairing $\wedge^k V \times \wedge^{m-k} V \to \wedge^m V$ given by the wedge product $(\alpha, \beta) \mapsto \alpha \wedge \beta$ is non-degenerate.
- (b) It follows that if we choose $*1 \in \wedge^m V$ to be one of the two unit *m*-vectors (this amounts to choosing an orientation on *V*), then we may define a linear transformation $*: \wedge^k V \to \wedge^{m-k} V$ by requiring

$$\alpha \wedge *\beta = g(\alpha, \beta) * 1.$$

Show that * is a linear isomorphism.

- (c) Show that $*(v_1 \wedge \cdots \wedge v_k)$ is a simple vector which represents the (m-k)-plane which is the orthogonal complement of the k-plane spanned by v_1, \cdots, v_k .
- (d) Show that $*^2 = (-1)^{k(m-k)}$.
- 5. (a) Show that if m = 2, then $*: V \to V$ may be interpreted as rotation by 90° in the counterclockwise direction. Thus, * defines a complex structure on V.
 - (b) Show that for m = 4, k = 2, we have $*^2 = 1$, and * defines an orthogonal direct sum decomposition of $\wedge^2 V$ into the +1 and -1 eigenspaces. A 2-vector α with $*\alpha = \alpha$ (resp. $*\alpha = -\alpha$) is called a *self-dual* (resp. *anti-self-dual*) 2-vector.

¹Last revised on February 18, 2020